Suggested Solutions to Midterm Test for MATH4220

March 10, 2016

1. (20 points)
(a) (8 points) Find the general solutions to

$$
u_{x}-2 u_{y}+2 u=0
$$

(b) (12 points) Solve the problem:

$$
\left\{\begin{array}{l}
y \partial_{x} u+3 x^{2} y \partial_{y} u=0 \\
u(x=0, y)=y^{2}
\end{array}\right.
$$

Find the region in the $x y$-plane so that the solution is uniquely determined.

Solution:

(a) Method 1:Coordinate Method:

Change variables to

$$
x^{\prime}=x-2 y, y^{\prime}=-2 x-y
$$

Hence $u_{x}-2 u_{y}+2 u=5 u_{x^{\prime}}+2 u=0$. Thus the solution is $u\left(x^{\prime}, y^{\prime}\right)=f\left(y^{\prime}\right) e^{-\frac{2}{5} x^{\prime}}$, with f an arbitrary function of one variable. Therefore, the general solutions are

$$
u(x, y)=f(-2 x-y) e^{-\frac{2}{5}(x-2 y)}
$$

where f is an arbitrary function.

Method 2: Geometric Method

The corresponding characteristic curves are

$$
\frac{d x}{1}=\frac{d y}{-2}
$$

that is, $y=-2 x+C$ where C is an arbitrary constant.Then

$$
\frac{d}{d x} u(x,-2 x+C)=u_{x}(x,-2 x+C)-2 u(x,-2 x+C)=-2 u(x,-2 x+C)
$$

Hence $u(x,-2 x+C)=f(C) e^{-2 x}$, where f is an arbitrary function. Therefore,

$$
u(x, y)=f(2 x+y) e^{-2 x}
$$

where f is an arbitrary function.
(b) The characteristic curves are

$$
\frac{d y}{3 x^{2} y}=\frac{d x}{y}
$$

that is, $y=x^{3}+C$ where C is an arbitrary constant. Then

$$
\frac{d}{d x} u\left(x, x^{3}+C\right)=u_{x}+3 x^{2} u_{y}=0
$$

Hence $u\left(x, x^{3}+C\right)=f(C)$ where f is an arbitrary function. Thus

$$
u(x, y)=f\left(y-x^{3}\right)
$$

Besides, the auxiliary condition gives that $y^{2}=u(x=0, y)=f(y)$. Hence, the solution is

$$
u(x, y)=\left(y-x^{3}\right)^{2}
$$

Note that when $y=0$ the equation vanishes, thus the characteristic curves break down when $y=0$, therefore the solution is uniquely determined on $\left\{(x, y): y>0, y>x^{3}\right\} \cup\{(x, y): y<$ $\left.0, y<x^{3}\right\} \cup\{(0,0)\}$. (Remark: if the solution is continuous, then u is uniquely determined on the whole plane by the continuity of u).

2. (30 points)

(a) (5 points) State the definition of a well-posed PDE problem.
(b) (5 points) Is the following problem well-posed? Why?

$$
\left\{\begin{array}{l}
\partial_{x}^{2} u+\partial_{y}^{2} u=0, \quad x^{2}+y^{2}<1 \\
\frac{\partial u}{\partial \vec{n}}(x, y)=0, \quad x^{2}+y^{2}=1, \vec{n} \text { is the unit outnorm of } x^{2}+y^{2}=1
\end{array}\right.
$$

(c) (10 points) Verifying that $u_{n}(x, t)=\frac{1}{n} \sin n x e^{-n^{2} t}$ solves the following probem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x}^{2} u, \quad 0<x<\pi, \quad-\infty<t<+\infty \\
u(0, t)=u(\pi, t)=0, \quad-\infty<t<\infty \\
u(x, t=0)=\frac{1}{n} \sin n x, \quad 0 \leq x \leq \pi
\end{array}\right.
$$

for all positive integer n.
How does the energy change when $t \rightarrow \pm \infty$?
(d) (10 points) Is the following problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x}^{2} u, \quad 0<x<\pi, \quad t<0 \\
u(0, t)=u(\pi, t)=0, \quad t<0 \\
u(x, t=0)=0, \quad 0<x<\pi
\end{array}\right.
$$

well-posed ? Why?

Solution:

(a) A PDE problem is said to be well-posed if the following three properties are satisfied:

Existence: There exists at least one solution $u(x, t)$ satisfying all these conditions.
Uniqueness: There is at most one solution.
Stability: The unique solution $u(x, t)$ depends in a stable manner on the data of the problem. This means that if the data are changed a little, the corresponding solution changes only a little.
(b) No.

Let $u(x, t)=C$ where C is an arbitrary constant. Then $\partial_{x} u=\partial_{y} u=\partial_{x}^{2} u=\partial_{y}^{2} u=0$, hence

$$
\begin{gathered}
\partial_{x}^{2} u+\partial_{y}^{2} u=0, x^{2}+y^{2}<1 \\
\frac{\partial u}{\partial \vec{n}}=\left(\partial_{x} u, \partial_{y} u\right) \cdot(x, y)=0, x^{2}+y^{2}=1
\end{gathered}
$$

Therefore, any constant is the solution of the problem. Hence the solution exists but is not unique.
(c) After a little simple computations, we have for all positive interger n

$$
\begin{gathered}
\partial_{t} u_{n}(x, t)=-n \sin (n x) e^{-n^{2} t} \\
\partial_{x} u_{n}(x, t)=\cos (n x) e^{-n^{2} t} \\
\partial_{x}^{2} u_{n}(x, t)=-n \sin (n x) e^{-n^{2} t}
\end{gathered}
$$

then $\partial_{t} u_{n}=-n \sin (n x) e^{-n^{2} t}=\partial_{x}^{2} u_{n}, \quad 0<x<\pi,-\infty<t<\infty$. And

$$
\begin{gathered}
u_{n}(0, t)=0, \quad-\infty<t<\infty \\
u_{n}(\pi, t)=0, \quad-\infty<t<\infty \\
u_{n}(x, t=0)=\frac{1}{n} \sin (n x), \quad 0<x<\pi
\end{gathered}
$$

hence u_{n} is indeed the solution of the problem.
The energy is

$$
E=\frac{1}{2} \int_{0}^{\pi}\left|u_{n}(x, t)\right|^{2} d x=\frac{1}{2 n^{2}} e^{-2 n^{2} t} \int_{0}^{\pi} \sin ^{2}(n x) d x=\frac{\pi}{4 n^{2}} e^{-2 n^{2} t}
$$

hence $E(t) \rightarrow 0$ as $t \rightarrow+\infty$ and $E(t) \rightarrow+\infty$ as $t \rightarrow-\infty$.
(d) No.

On one hand, $u=0$ is a solution of

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x}^{2} u, \quad 0<x<\pi, \quad t<0 \\
u(0, t)=u(\pi, t)=0, \quad t<0 \\
u(x, t=0)=0, \quad 0<x<\pi
\end{array}\right.
$$

On the other hand, $u_{n}(x, t)=\frac{1}{n} \sin n x e^{-n^{2} t}$ solves the following probem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x}^{2} u, \quad 0<x<\pi, \quad t<0 \\
u(0, t)=u(\pi, t)=0, \quad t<0 \\
u(x, t=0)=\frac{1}{n} \sin n x, \quad 0 \leq x \leq \pi
\end{array}\right.
$$

for all positive integer n by above problem (c).
Note that

$$
\int_{0}^{\pi}\left|\frac{1}{n} \sin n x-0\right|^{2} d x=\frac{\pi}{2 n^{2}} \rightarrow 0 \text { as } n \rightarrow+\infty
$$

However when $t<0$,

$$
\int_{0}^{\pi}\left|\frac{1}{n} \sin (n x) e^{-n^{2} t}-0\right|^{2} d x=\frac{\pi}{2 n^{2}} e^{-2 n^{2} t} \rightarrow+\infty \text { as } n \rightarrow \infty
$$

Hence, when the data $u(x, t=0)$ changes a little in the sense of $L^{2}-$ norm, the difference of the solutions in L^{2}-norm tends to infinity. This violates the stability in the sense of L^{2}-norm, therefore, it is not well-posed.
Remark: consider the stability in uniform sense.
On one hand, $\max _{0<x<\pi}\left|\frac{1}{n} \sin (n x)-0\right| \rightarrow 0$ as $n \rightarrow \infty$
On the other hand, when $t<0, \max _{0<x<\pi}\left|\frac{1}{n} \sin (n x) e^{-n^{2} t}-0\right| \rightarrow+\infty$ as $n \rightarrow \infty$
This violates the stability in the uniform sense.
3. ($\mathbf{1 0}$ points) Is there a maximum principle for the Cauchy problem for the 1 -dimensional wave equation? Explain why?
Solution:No.
Consider the following Cauchy problem:

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-\partial_{x}^{2} u=0, \quad-\infty<x<+\infty, \quad t>0 \\
u(x, t=0)=0, \quad \partial_{t} u(x, t=0)=\sin x, \quad-\infty<x<+\infty
\end{array}\right.
$$

And the unique solution is given by d'Alembert formula:

$$
u(x, t)=\frac{1}{2} \cos (x+t)-\cos (x-t)=-\sin x \sin t, \quad-\infty<x<\infty, t>0
$$

Then $u(x, t)$ attains its maximum 1 only at the interior points $\left(\frac{\pi}{2} \pm 2 n \pi, \frac{3 \pi}{2}+2 n \pi\right)$ or $\left(\frac{3 \pi}{2} \pm 2 n \pi, \frac{\pi}{2}+2 n \pi\right)$ for $n=0,1,2, \cdots$. However, $u(x, t)=0$ on the boundary $\{(x, t): t=0\}$. Therefore there is no maximum principle for the Cauchy problem for the 1-dimensitonal wave equation.

Remark: The key is to find an counterexample.
4. (10 points)
(a) ($\mathbf{5}$ points) What is the type of the equation

$$
\partial_{t}^{2} u+\partial_{x t}^{2} u-2 \partial_{x}^{2} u=0 ?
$$

(b) (5 points) Solve the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u-2 \partial_{x}^{2} u=0, \quad-\infty<x<+\infty, \quad-\infty<t<+\infty \\
u(x, t=0)=x^{2}, \quad \partial_{t} u(x, t=0)=\sin x, \quad-\infty<x<+\infty
\end{array}\right.
$$

Solution:

(a) Since $a_{11}=1, a_{12}=\frac{1}{2}, a_{22}=-2$, then $a_{12}^{2}-a_{11} a_{22}=\frac{9}{4}>0$, hence it is hyperbolic.
(b) The solution is given by d'Alembert Formula directly:

$$
u(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi y d y
$$

Here $c=\sqrt{2}, \phi(x)=x^{2}$ and $\psi(x) \sin x$. Hence

$$
u(x, t)=\frac{1}{2}\left[(x+c t)^{2}+(x-c t)^{2}\right]+\frac{1}{2 \sqrt{2}} \int_{x-c t}^{x+c t} \sin y d y=x^{2}+2 t^{2}+\frac{1}{\sqrt{2}} \sin x \sin \sqrt{2} t
$$

5. (20 points) Consider the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x}^{2} u, \quad-\infty<x<+\infty, \quad t>0 \\
u(x, t=0)=\phi(x) \quad-\infty<x<+\infty
\end{array}\right.
$$

(a) ($\mathbf{1 0}$ points) Show that any finite energy solution to the Cauchy problem is unique by the energy method.
(b) ($\mathbf{1 0}$ points) Find the solution with $\phi(x)$ given by

$$
\phi(x)= \begin{cases}1, & \text { if } x>0 \\ 0, & \text { if } x<0\end{cases}
$$

Solution:

(a) Soppose u_{1} and u_{2} are two finite energy solution to Cauchy problem. Let $v(x, t)=u_{1}(x, t)-$ $u_{2}(x, t)$, then $v(x, t)$ satisfies the following problem:

$$
\left\{\begin{array}{l}
\partial_{t} v=\partial_{x}^{2} v, \quad-\infty<x<+\infty, \quad t>0 \\
v(x, t=0)=0 \quad-\infty<x<+\infty
\end{array}\right.
$$

Multiplying the both sides of $\partial_{t} v=\partial_{x}^{2} v$ by u and taking intergral from $-\infty$ to ∞ with respect to x, then we have

$$
\int_{-\infty}^{\infty} \partial_{t} v v d x=\int_{-\infty}^{\infty} \partial_{x}^{2} v v d x
$$

Then

$$
\begin{gathered}
\text { L.H.S }=\frac{d}{d t} \int_{-\infty}^{\infty} \frac{1}{2} v^{2} d x \\
\text { R.H.S }=\left.\partial_{x} v v\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty}\left(\partial_{x} v\right)^{2} d x
\end{gathered}
$$

Note that u_{1} and u_{2} are finite energy solutions, that is,

$$
\frac{1}{2} \int_{-\infty}^{\infty}\left|u_{1}(x, t)\right|^{2} d x<+\infty, \quad \frac{1}{2} \int_{-\infty}^{\infty}\left|u_{2}(x, t)\right|^{2} d x<+\infty
$$

then

$$
\frac{1}{2} \int_{-\infty}^{\infty}|v(x, t)|^{2} d x \leq \int_{-\infty}^{\infty}\left|u_{1}(x, t)\right|^{2}+\left|u_{2}(x, t)\right|^{2} d x<+\infty
$$

that is, $v(x, t)$ is a finite energy solution which implies that $v(x, t) \rightarrow 0$ as $x \rightarrow \pm \infty$. Hence

$$
\text { R.H.S }=-\int_{-\infty}^{\infty}\left(\partial_{x} v\right)^{2} d x
$$

Then, we have

$$
\frac{d}{d t} \int_{-\infty}^{\infty} \frac{1}{2} v^{2} d x=-\int_{-\infty}^{\infty}\left(\partial_{x} v\right)^{2} d x \leq 0
$$

and then for $t>0$

$$
0 \leq \int_{-\infty}^{\infty} \frac{1}{2} v^{2}(x, t) d x \leq \int_{-\infty}^{\infty} \frac{1}{2} v^{2}(x, 0) d x=0
$$

By the continuity of v, we have $v(x, t) \equiv 0,-\infty<x<\infty, t>0$. Thus we have shown that $u_{1}(x, t) \equiv u_{2}(x, t)$ for $-\infty<x<\infty, t>0$. Therefore any finite energy solution is unique.
(b) Method 1:Find a solution with the from $u(x, t)=U\left(\frac{x}{\sqrt{4 t}}\right)$. Let $p=\frac{x}{\sqrt{4 t}}$, then $U\left(\frac{x}{\sqrt{4 t}}\right)$ satisfies the following eqution:

$$
U^{\prime \prime}(p)+2 p U^{\prime}(p)=0
$$

Hence $U(p)=C_{1}+C_{2} \int_{0}^{p} e^{-s^{2}} d s$ where C_{1}, C_{2} are arbitrary constants. That is,

$$
u(x, t)=U\left(\frac{x}{\sqrt{4 t}}\right)=C_{1}+C_{2} \int_{0}^{\frac{x}{\sqrt{4 t}}} e^{-s^{2}} d s
$$

Now use the initial condition, expressed as a limit as follows.

$$
\begin{aligned}
& x>0,1=\lim _{t \rightarrow 0+} U\left(\frac{x}{\sqrt{4 t}}\right)=C_{1}+C_{2} \int_{0}^{+\infty} e^{-s^{2}} d s \\
& x<0,0=\lim _{t \rightarrow 0+} U\left(\frac{x}{\sqrt{4 t}}\right)=C_{1}+C_{2} \int_{0}^{-\infty} e^{-s^{2}} d s
\end{aligned}
$$

Note that $\int_{0}^{\infty} e^{-s^{2}} d s=\frac{\sqrt{\pi}}{2}$, we have $C_{1}=\frac{1}{2}, C_{2}=\frac{1}{\sqrt{\pi}}$. Therefore,

$$
u(x, t)=\frac{1}{2}+\frac{1}{\sqrt{\pi}} \int_{0}^{\frac{x}{\sqrt{4 t}}} e^{-s^{2}} d s
$$

Method 2: The solution for the Cauchy problem is given by

$$
u(x, t)=\int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y
$$

where $S(x, t)$ is the heat kernel, $S(x, t)=\frac{1}{\sqrt{4 k \pi t}} e^{-\frac{x^{2}}{4 k t}}$. Here, $k=1$

$$
\phi(x)= \begin{cases}1, & \text { if } x>0 \\ 0, & \text { if } x<0\end{cases}
$$

Then,

$$
u(x, t)=\int_{0}^{\infty} \frac{1}{\sqrt{4 \pi t}} e^{-\frac{(x-y)^{2}}{4 t}} d y=\frac{1}{2}+\frac{1}{\sqrt{\pi}} \int_{0}^{\frac{x}{\sqrt{4 t}}} e^{-s^{2}} d s
$$

6. ($\mathbf{1 0}$ points) Derive the solution formula for the following initial-boundary value problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\partial_{x}^{2} u, \quad 0<x<+\infty, \quad t>0 \\
u(x, t=0)=\phi(x) \quad 0<x<+\infty \\
\partial_{x} u(x=0, t)=0, \quad t>0
\end{array}\right.
$$

by the method of reflection.
Solution: Use the reflection method, and first consider the following Cauchy Problem:

$$
\left\{\begin{array}{l}
\partial_{t} v=\partial_{x}^{2} v, \quad 0<x<+\infty, \quad t>0 \\
v(x, t=0)=\phi_{\text {even }}(x) \quad 0<x<+\infty
\end{array}\right.
$$

where $\phi_{\text {even }}(x)$ is even extension of ϕ which is given by

$$
\phi_{\text {even }}(x)= \begin{cases}\phi(x), & \text { if } x>0 \\ \phi(-x), & \text { if } x<0\end{cases}
$$

Then the unique solution is given by:

$$
v(x, t)=\int_{-\infty}^{\infty} S(x-y, t) \phi_{e v e n}(y) d y
$$

And since $\phi_{\text {even }}(x)$ is even, so is $v(x, t)$ for $t>0$, which implies

$$
\partial_{x} v(x=0, t)=0, t>0
$$

Set $u(x, t)=v(x, t), x>0$, then $u(x, t)$ is the unique solution of Neumann Problem on the half-line. More presicely, $x>0, t>0$

$$
\begin{aligned}
u(x, t) & =\int_{0}^{\infty} S(x-y, t) \phi(y) d y+\int_{-\infty}^{0} S(x-y, t) \phi(-y) d y \\
& =\int_{0}^{\infty} S(x-y, t) \phi(y) d y+\int_{0}^{\infty} S(x+y, t) \phi(y) d y \\
& =\frac{1}{\sqrt{4 k \pi t}} \int_{0}^{\infty}\left[e^{-\frac{(x-y)^{2}}{4 k t}}+e^{-\frac{(x+y)^{2}}{4 k t}}\right] \phi(y) d y
\end{aligned}
$$

